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his case are derived from the equations of fluid

assuming that the turbulent field is homogeneous
be negligible. For initial conditions, it is postulated that
7and that the turbulent magnetic field fluctuations are initially
an magnetic field with the turbulent velocity field then causes mag-
G arise at later times. In general, the turbulent energy in the mechanical and
euds toward cquipartition for large values of time or of mean magnetic field. How-
the kinematic viscosity is much less than the clectrica! resistivity (or magnetic diffusivity),

or liquid metals, equipartition is not approached before thg turbulence is damped out by the
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INTRODUCTION

URBULENCE in conducting fluids in the
presence of magnetic fields has received con-
siderable attention in recent years.'”> Most of the
interest in this type of turbulence stems from its
importance in certain astrophysical and geophysical
applications. Phenomena such as sunspots, cosmic
rays, and the geomagnetic field appear to be re-
lated, respectively, to turbulence in the Sun, inter-
stellar space, and the Earth’s core. Some of the
astro- and geophysical aspects of magneto-fluid dy-
namic turbulence are discussed in the book by
Cowling.®
In the present study we try to gain some under-
standing of magneto-fluid dynamic turbulence by
considering an idealized model for which a solution
can be obtained. A uniform magnetic field is im-
posed on a field of homogeneous turbulence in a
conducting fluid. Such a field of turbulence will
decay with time, so that it is necessary to produce
it initially by some means, for instance, by passing
the fluid through a grid. Although turbulent fluctua-
tions in the magnetic field are initially absent in
such a system, it will be seen that they can arise
at later times because of the interaction of the
turbulent velocity field with the imposed mean
magnetic field. A two point analysis of the turbulent
fields will be carried out. In order to make the prob-
lem determinate, it is assumed that the turbulence
is weak enough for triple correlations to be negligible.
In this way deductive information on turbulence

1 G. K. Batchelor, Proc. Roy. Soc. (London) A201, 406
(1950).
( 2 Si Chandrasekhar, Proc. Roy. Soc. (London) A204, 435
1951).

3 T. Tatsumi, Rev. Mod. Phys. 32, 807 (1960).

¢+ L. S. G. Kovasznay, Rev. Mod. Phys. 32, 815 (1960).

5 T. G. Cowling, Magnetohydrodynamics (Interscience Pub-
lishers, Inc., New York, 1957).
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is obtained from the basic equations.®”® In prin-
ciple the analysis could be extended to stronger
turbulence by considering more points in the fluid
as in reference 9.

One of the important problems in magneto-fluid
dynamic turbulence is the ultimate partition of
turbulent energy between the mechanical and mag-
netic modes. Some authors have argued that there
should be an approximate equipartition of energy
between the two modes, whereas others have indi-
cated that the turbulent magnetic and vorticity
fields should be similar. A summary of the arguments
for and against each point of view is given in
reference 5. It is hoped that the present study will
give some insight into this problem. It will be seen
that, at least for the model considered here, the
turbulent energy tends ultimately to be distributed
equally between the mechanical and magnetic
modes.

BASIC EQUATIONS

It is assumed that the dynamics of the conducting
fluid are deseribed by the following equations:
Navier—Stokes equation:

Du 1 2 1, &
o S Zix
Di pr+vVu+pJ b, 1)
Continuity equation:
V-u =0, (2)
Maxwell’s equations:
i= u'V xb, 3)
Vb =0, )
¢ R. G. Deissler, Phys. Fluids 4, 1187 (1961).
7 R. G. Deissler, J. Geophys. Res. 67, 3049 (1962).
8 R. G. Deissler, Intern. J. Heat Mass Transfer 6, 257
(1963).
9

R. G. Deissler, Phys. Fluids 3, 176 (1960).
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MAGNETO-FLUID DYNAMIC TURBULENCE

V xE = —ab/at, (5)

[

Ohm'’s law: ce

j= o +uxb —e;'n’jxb), (6)

where D signifies a substantial derivative, u the
instantaneous velocity, ¢ the time, p the density,
p the instantaneous pressure, j the instantaneous
electrical current, b the instantancous magnetic field,
o the permeability of free space, E the instantaneous
electrical field, o the electrical conductivity, e, the
charge on an electron, and n. the number density
of electrons. mks units are used throughout. The
fluid properties are assumed constant in Egs. (1)
and (6), and the usual magneto-fluid dynamic ap-
proximations are made in Maxwell’s equations. The
last term in Eq. (6) is, of course, the Hall current;
that current arises because of the force V xb which
acts on the electron gas as it moves through the
fluid with the relative velocity V. The velocity V
is related to j by the equation j = —n.e.V.

Taking the curl of Fq. (6), and using (3), (4),
and (5) results in

#ivx(VxB) - —og’ﬁ oV x (a xb)

— (eouo)”'V x [(V x D) xb].
With the use of the vector identities
V x(V xu) = V(V-u) — V-Vu,
(V xu) xu = (u-V)u — $Vo’,
Vxuxv)=vVu—u-Vv+uV-v)— v(V-u),
V x(Vu) =0
and Eqgs. (2) and (4), Eq. (7) becomes

@)

_1 V-Vb =

_% 4+ b-Vu — u-Vb
Lo at
— (egeno0) 'V % [(B-V)D].  (8)

In component form this equation can be written as
3b, 1 0%
oo 0%y ax,,

6 (blgk)
ox; éx, ’

-9 (u;by —

at oz, baw) + -

- (ecne#oa)_leiik ©)
where ¢;;; has the value 0 when 7, j, and k are not
all different. When the subscripts are all different,
e:;x has the value +1 when they are in cyclic order,
and —1 when they are in acyclic order. The sub-
seripts in Eq. (9) can take on the values 1, 2, or 3,
and a repeated subscript in a term indicates a sum-
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mation of terms, with the subscript successively

taking on the values 1, 2, and 3.
The term jxb in Eq. (1) can be written as

jxb = Mi(v xb) xb = #i(B-vB — 1.

Equation (1) then becomes, when written in com-
ponent form,

ou,  dww) _ _Lop  _du
at axk p (9.‘6.- axk (")l‘k
pop 0T Zpop 9T

Inasmuch as we will be considering a steady mean
magnetic field, as well as a fluctuating field, we write
the instantaneous field as

b; = b, + B, (11)
where b; is the fluctuating component and B; is

the steady mean component of the magnetic field.
Then Eq. (10) becomes

ou_ sy _1op . _du
at az, p 0x; dz, 0z,
+;(;axk(b b + bB, + b.B; + B.B))
1
~ Sup Oz, (bkbk + 2b,B, + B.B)). (12)
The average value of Eq. (12) is
g — 1 0 5
0= _axk uy, + ;— &‘ (bibk + B.B))
1
~ % bk + BB), (13
Ko 0X;

where the overbars indicate average values. Sub-
tracting Eq. (13) from Eq. (12),

i 0 o iy =10y, O
at dx, Ok i o dx; | 9% 0%
+ L9 (5,0, — biby + B, + b,B)
Hop Az
1 P
2#0'0 a (bkbk - bkbk + 2kak)- (14)
Similarly, Eq. (9) becomes
ab,‘ - i — _
at axk(uiblc — u;b, + u.B, bu,
1 9%,
+ ba — Baw) + o 9z, Oz
- 32
— (ecMetto0) €ijn oz, oz,
“(biby — biby + BB, + bB).  (15)
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Equations (14) and (15) are the equations for the
velocity and magnetic field at a point P in the fluid.
In order to construct two point correlation equa-
tions, those equations are also written at another
point, say P’

u’ 9 —77. 1dp’ 6 u}
pufbat § = —_——7 , [ K —_— =
at ax,: Y i e v
+ <= =% (bipt — BB + biBY + biBY)
Kop 0T k
1 ,
~ 5 ax’ (blbl — blb, + 2b.BY), (16)
ab’ i) 577
—1 = — b — B! — by!
EY) ax; (ulbi u;b, + uiB; biug
P ’ a b, .
+ by, — B uk) + " 6.17,, Bxk
_ 9
1
(ecneuoo') eimk ax’; ax;
-(bibl — bib + bIBL + bBY).  (17)

Two-Point Correlation Equations

If we multiply Eq. (14) by u/ and Eq. (16) by u,,
and add the two equations, and take average values,
we obtain

9 wa, = U, — J wuluy,

(')t iUy 6 . Pled A2 a ]/¢ k
1 (aﬁf ai}?) ( dual, | duu )
oNaz, T o) T oz, 92, T a7 ot

+ 1 9 (b bat; + ba/B, + baiB,)

+#—1p_*(ubb,,+uka+uka’)

0

1
2HOP 6”(‘

(bkbku + 2b}~u Bk)

- 1 I (u bkbk + 2u ka)

2#0 (18)

In obtaining this equation, use was made of the fact
that quantities at one point are independent of the
position of the other point. Introducing the variable
r; = zl — z, gives, for homogeneous turbulence
and a uniform mean magnetic field,

au;u — -
YR ar (wauu; — wuiuy)

+-L 2 G -

b.baul)
Mop 07 i)
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9 — T
+ # B, ; (u:b; — ba;)
138 |—
+ = 8_ |: u + (bkbku: + 2bwu; B,,)]
LAy i(u.b7+ ulB |
p o, P 2o i010x zkk—I
)
T ary. ar,,. (19)

An equation for the correlation between the ve-
locity and the magnetic field is obtained by multi-
plying Eq. (14) by b}, Eq. (17) by u;, and performing
operations similar to those used in obtaining Eq. (19).
This gives
dub; _

at o

lp bbb, + unlbl — u,.u,:b,’.)

+ B (g — L 5)
r Hop

9 (1-—5 537 4 1 57 )
t or, <p P + 2u0p bibiby + Hop b:bBs
1Y o%u;b]
+ (V + U#o) ory, Oy
62
- (ecne#oU) €imk o o ar., or, (u b bk + u, b Bk + u; kaz)

(20)
Similarly, from Egs. (15) and (16),

%ﬁt“_; - —a% (u,-bkuﬁ — bayu; + bau, — %p Eﬁ_bi)
+ B, a—rk ; (b:b] — uuj)
-2 ( 1,7)’ + 2#0 b0l + ;)l—p EZBk)

-(bibu] + bulB, + balB). 1)

The equation for the two point magnetic field cor-
relation is obtained from Eqs. (15) and (17) as

abb; 9

5i- = 3, (Dbl — baub)) + , (b.ubl — ubyb))
d 2 0 b b’
+ Bk 67‘,; (biuj U b ) + Tilg ark 67',,
- * =y Ty 7
— (BNepto0) l[fimkm (b:beb; + b,b;B, + b,b:B))

62
+ €imk o " a a r

(bibibi + b.biB, + b, kax):] (22)



MAGNETO-FLUID DYNAMIC TURBULENCE

By an argument similar to that given in refercnce 10,

a0

it can be shown that the term (8/9r,) (b;u,b'— bub; )
in the last equation is zero for r = 0. Thus, that
term can be interpreted as the Fourier transform
of a term which transfers magnetic energy between
eddies of various sizes.

The pressure and magnetic pressure terms in
Egs. (19) to (21), that is, terms containing 9/dr;
or 8/dr;, can be interpreted as transferring energy
(or correlation) between the directional components.
The argument is similar to that given in reference 10.
Other terms in the preceding correlation equations,
or their Fourier transforms will be interpreted later
in the paper.

To obtain equations for the pressure and magnetic-
pressure terms, take the divergence of Egs. (14)
and (16) and apply continuity. Then Eq. (14), for
instance, becomes

0 - ) | dun, 18
dx, 0z, ox, 9x; p 0x; 0x;
s [aﬂ(bibk) _9bib, | (BB a2(kal.)]
Hop LOT, Ox; ox, ox; ox, o0x; dzx, ox;
L (bebe — Bubs + 2b,B). 23)

2y0p a"c 61

Multiplying this equation by wu!, averaging, and
introducing the variable r results in

1 3 [T‘
par or; pu

(bkbku + 2bAu Bk)]

d* u,uku,- 19 b,bkuﬁ

= or, an, + top OT Or: (24)
By taking the Fourier transform of this equation,
it is easy to see that the quantity in brackets will
be zero if the triple correlations are neglected. [See
for instance Eq. (14), reference 9.] Similarly all of
the other pressure and magnetic-pressure terms in
Eqgs. (19) to (21) will be zero if the triple correlations
are neglected. Thus neglecting triple correlations and
assuming that the mean magnetic field is in the
direction Bj, the set of Fgs. (19) to (22) becomes

duau; _1_ *uu;
YR Bs(9 (u; b bu)+2v37‘k6 , (25)
qub; _ p _( 1 ) ( _1> 8ub]
at b bi)+ v+ o) Oy O7y
-1 0 uibl azu_igz >
- (ecne”'OU) B3<eim3 arm arl + El'mk arm 67'3 ) (26)

10 G, K. Batchelor, The Theory of Homogeneous Turbulence
(Cambridge University Press, New York, 1953), p. 87.
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Db = By L i, — ) + % Zbb
SRS - B
+ s g+ o ;’ii‘f;:)- &

Spectral Equations

In order to convert Eqs. (25) to (28) to spectral
form, define the following three-dimensional Fourier
transforms:

wa, = f: e e du, (29)
b = [ g, (30)
b= [ e an, (31)
Wb = [ g an. (32)

By using these relations, the lourier transforms of
Egs. (25) to (28) are obtained as

do,; Lo o
% - ,;Tszle(Gfi = BL) = QVKZ‘O”’ (33)
44
9B _ Bgim(@ii - iﬁ”) o <V + “1_>K2 G
+ (ecnenod) " BuleimiknriBi + €imiknisBit),  (34)
’.
96 _ B‘:ﬂ'm(i Bii — ‘a") B (V + —1—>K26£i
at Hop THo
+ (enotto0)  Bal€imstnkiBl; + €imptnksBin), (35)
2
9B = Baix,(8%; — B — 2 Bi
at THo
+ (6mello<7>_]B3(5.‘m3KmKthf + €imikimkaB;
+ €imakmkiBi + eikamK3ﬁl'k)' (36)

As they stand, most of the 36 equations represented
by (33) to (36) are interrelated. The solution could
be carried out numerically if it appears to be im-
portant to do so. However, if the Hall current terms
are neglected (large n, or o), a considerable simpli-
fication is obtained, inasmuch as it is then only
necessary to solve three equations simultaneously.
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The Hall currents are negligible for a liquid metal,
although they may not be for a rarified plasma. It
appears that the results will still be useful for giving
an insight into some of the physical processes oceur-
ring in this type of turbulence.

If we neglect Hall currents and compare Eqs. (34)
and (35), we find that the relation B! = —g/;
holds for all times if it is true at an initial time.
Here it will be assumed that the magnetic field
fluctuations are initially zero, so that the above
relation will hold. Thus, the set of Eqs. (33) to (36)
becomes

M - (Z.ZBaK.zB;i\

at \ mop

6 ('L2B;K~;B:,> 2 §K2l [ (Bii) }
Ay = Ci; — \ T
ot Hop Hop Hop
_ <V + _1>K2 <_ZZB3K“B"f>, (39)
T o Hop

2(2)- (222) - 2 (2)

It \pop Mop ouey \Mop/ "
In these equations ¢,; is a spectrum tensor for tur-
bulent velocity energy and 8.;/(uop) is a correspond-
ing tensor for turbulent magnetic energy. The term
12B3x58/;/ (mop) oceurs in both Egs. (37) and (39),
but with opposite signs. Thus it can be interpreted

as an interchange term which transfers turbulent
energy between the mechanical and magnetic modes.

- 2VK2¢ ify (37)

(39)

Solution of Spectral Equations
A general solution of Eqgs. (37) to (39) is

®ij = exp |:_‘<V + ;i—)x‘z(t - t_o):|

A(C)ii + (Cy)s; exp [s(t — )]
+ (Ca)i; exp [—s(t — )]},
'L.2B3K36-,'i

o = exp Ii_<;llt—o + v>x2(t — to)]
fea ()
+ (cz)ij[<;—‘lm - y>.<=’ - s:I exp [s(t — )]
+ (Ca).-,»[<rl1‘0 - v>x2 + S] exp [—s(t — to)]}, (41)
Bis 1 exp [—(a—i—o + u)x2(t - t) ]{2@2#32"2

Hop Hop
\? 1 \ 2B
—-v)x‘—(—-—v)x%s— s
Olg Hop

+ (G [(z
o

(40)
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cexp [s(t — )]

+ (03>ii|:<—1_ - V) e + <_1_ — V)K2s _ 2_;&]
THo Tho Mop
cexp [—s(l — tn)]}/<2'23;{3)y
Hop

where
[(1 ) 4 zxz]%
s=|l——v]x - —"1,
oo Hop

and (C,);;, (Cs)y;, and (C3);; are constants of inte-

gration.
Arday

(12)

(43)

Ty .
In order to cvaluate the

we use the conditions that ’(he turbulence is 1nltlally
isotropic and that 8,; and 48!, are initially zero.
The last two conditions correspond to the assumption
that the magnetic field fluctuations are zero at
{ = t,. The interaction of the mean magnetic field
and the velocity fluctuations will then cause mag-
netic field fluctuations to arise at later times, and,
in addition, will cause the turbulence to become
anisotropic. The assumption that the turbulence is
initially isotropic means that, for weak turbulence,

(¢ii>0 = (']0,/12772)(K25i1'

- KiKJ')

(44)
as given by Fq. (43) in reference 6. The quantity
Jo 1s a constant that depends on initial conditions

and §;; is the Kronecker delta. For the foregoing
initial conditions, the constants of integration are

J K2 KK 2I\2
0 j 3K3
(Cx)ii = ——53 5” — _LEL> -

_ _Jo <5 _ ;4>[<_1 _ )3 s
247 \ 77 K Tito V) K

2 N
+ (i - 1/) K's — 4(—1— - ) B”‘““S], (46)
Ty O o

Mop
and

_ :iﬁ( ﬁ'fi)KL )’ s
(Cn)ii - 247!’283 51‘1’ K2 THo —VJK

1 2, 1 "Bk
~— = —vjs—4|l—— —p]—=+
Tlg O lo MHop

When s, as given by Eq. (43), becomes imaginary
the following solution can be used:

(45)

(€2

K"Bik;
Hop

2B2ds
Ho p

. 47

Cij = {(CDi; + (€D cos [s'(t — t)] + (Ch),;

.sin [S/(t —_ [0)]} exp [_<_1_ + V)Kz(t - t())], (48)
Olo



MAGNETO-FLUID DYNAMIC TURBULENCE

’1:2B3K3ﬂ.'i = exp l:__(_l + V)Kz(t hand to)]
Lop T Mo

{enulE — o) + [enu(E - o)
- (C’é).',-s’] cos [s'(t — t)]
+ [(Cé).',-(;}; — v>x2 + (C;);,»s’]

sin [s'(¢ — zo)]} , (49)

13 2 2
Bis = ——1 €xXp I:_< , + V)Kz(t _ to):l{z(ol).‘iBska
Mop Hop OHo Hop

+ [(0')..(—1— - v>2x‘ - (C’)-‘s’(i - v>x2
¥ \opo 4% \ouo
. Q(Cé)ii §K§

Mop

+ I:(Cg)”<a_;110 - V) <+ (Cé)-'isl(a_lllo - V)x2

:l cos [s'(t — 1y)]

7" R22 2 2
- ___2(03),,_@} sin [t ~ 10)1} / (23—'9) (50)
Kop Kop
where
2 2 2 ¥
s (A NT @
Mop Olo
N _J£_< _ K_'<_> Bk
(Cl)ii - 61'_28/2 6")' K2 Hop (52)
_ J ( K,K_)
(C;)H - 121!'28'2 5;,’ - K2
2 2 2
[233“3 - (i - y) K“:|, (53)
Hop Olho
and
, __J_ri( _&&)(J__ )z
(03)|‘i = 1245 8:; e oho VK. (54)

The foregoing spectral quantities are functions
of the components of x as well as of its magnitude.
In order to obtain quantities that are functions only
of the magnitude x we integrate over all directions
in wavenumber space. Thus, as suggested by
Batchelor, we define the quantity ¢.; by the equation

A
b = [ eu 449 55
where A is the area of a sphere of radius «. Letting
r = 0 in Eq. (29) shows that

1255

ww; = [ de (56
0

Thus ¥.; dk gives the contribution from wave num-
ber band dk to u.u;, and a plot of ¥,; against « shows
how contributions to wu; are distributed among
the various wave numbers or eddy sizes.

Equations (40) to (54) can be written in spherical
coordinates by setting

K1 = Kk COSeSIn 0, «, =«ksinegsin®, x; =«cosf. (57)

Then Eq. (55) becomes
L4 2x
Viilk) = f f e:i(k, @, O’ sin 8 dp db. (58)
0 0

The component ¢;; and ¢,; are independent of the

angle ¢. Thus Eq. (58) becomes, for ¢,;,
1

Vii = 4md® f s d(cos 6). (59)

o

Spectrum functions corresponding respectively to

B::, and to the interchange term in Eqs. (37) and

(39), are

1
Q. = 4nd f B,: d(cos 8), (60)
0

and

1
I, = 4md f (12Bsx,B's/pop) d(cos ). (61)

Similar expressions are used to calculate ¥;; and
Q3. Computed spectra of the various turbulent quan-
tities will be considered in the next section. For
making the calculations, the indicated integrations
in Eqs. (59), (60), and (61) were carried out nu-
merically.

RESULTS AND DISCUSSION

Figure 1 shows dimensionless spectra of the energy
contained in the turbulent velocity field (spectra of
1uu,;). Curves are shown for values of ouev of 1077,
0.5, and 2. The low value of ousr corresponds, in
order of magnitude, to liquid metals, whereas the
higher values may approximate those for certain
rarefied astrophysical plasmas.

When plotted with the similarity variables used
in Fig. 1, the spectrum for no magnetic effects
(B% = 0) does not change with time, so that com-
parison of the various curves indicates how magnetic
forces will alter the spectrum. In all cases the curves
for B% s 0 lie below those for B% = 0, thus illus-
trating the stabilizing effect of the magnetic field.
For the two lower values of ouer, the areas under
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Fia. 1. Dimensionless spectra of energy in turbulent velocity field, $u;u,. (a) opor = 1077 (b) opor = 0.5. (¢) opor = 2.0.

the curves decrease as B% increases. However, for
oy = 2, a minimum is indicated, and further in-
creases in B*% cause a relative increase in turbulent
velocity energy. These effects are shown more clearly
in Fig. 2 where values of wu;/ (uu:)o and usus/ (Usus)o
are plotted against B%. The subscript 0 is for B* = 0.
The ordinates were obtained from the areas under
spectrum curves such as those in Fig. 1 and similar
curves for ¥s;. For high values of B% the velocity
fluctuations for ouer = 2 are nearly as strong as
those for B%X = 0, although the spectra differ. For
ouer < 1, the velocity fluctuations decrease and
approach zero for large values of B*, the rate of
approach to zero being much greater for the lower
value of auv.

This damping of the velocity fluctuations seems
to be related to the darkness of sunspots, as dis-
cussed by Cowling (reference 5). The magnetic field
in the sunspot apparently reduces the turbulence
in that region, and thus reduces the convective heat
transport to the surface. Thus the surface appears
dark. Inasmuch as ouov is less than 1 for the Sun,
Tig. 2 indicates that this damping of the turbulence

BYy= (-1, 2By uy pr)/2
102 2 4 [3 8 10 12 14 16 18 20 %103
\\\ T op, vl I ——"=== T T T
\\ \\\ /5”’ Uio; Ao ude
8- A —
\ ——
\ >\1 wiuly,
- N\,
e \\ AN
N Ncixio-?
N PN
~ AN
4= [ \\\
e
547 T T
24 ———
1 L 1 I 1 1 I I |
(] 2 4 6 8 10 12 14 6 8 20

8= (11,7287t pr1V2

F1e. 2. Ratio of mean turbulent velocity fluctuations to those
for no magnetic field.

should take place if the mean magnetic field in the
sunspot is sufficiently large.

The energy in the turbulent magnetic field will
be considered next. Dimensionless spectra of 3b;b,
are plotted in Fig. 3, where it is seen that the trends
for small B% are opposite to those for the turbulent
velocity field shown in Fig. 1. As B% increases, the
turbulent magnetic energy, in general, increases
relative to the turbulent velocity energy for no
magnetic field. (The comparison is made relative
to the velocity energy for B% = 0 since the turbulent
magnetic energy is zero for B% = 0.) For larger
values of B* the variation is more complex. However,
it appears that for all values of B%, turbulent energy
is being transferred between the mechanical mode
and the magnetic mode by the interchange term
in Egs. (37) and (39).

The integrated interchange term as calculated by
Eq. (61) is plotted in Fig. 4. That term is predomi-
nantly positive for ouer < 1, and thus indicates,
that turbulent energy is being transferred from the
mechanical to the magnetic mode. For oupy = 2
and low values of B% (not shown) the interchange
term is also predominantly positive. However, for
B%x = 16 [Fig. 4(c)], I, is predominantly negative.
That is, for ocuey > 1, energy is transferred from the
magnetic to the mechanical mode at high values
of B%. Energy can apparently be transferred from
the velocity to the fluctuating magnetic mode be-
cause the magnetic lines of force in the mean im-
posed magnetic field tend to follow the fluid motions,
at least at high values of conductivity or of ouv.
(The turbulent velocity fluctuations tend to scramble
the magnetic lines of force.*) If, on the other hand,
the fluctuating magnetic energy happens to be very
large, the tension in the lines of force tends to
straighten them out and reduces the fluctuating
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F16. 3. Dimensionless spectra of energy in turbulent magnetic field, 1b:bi. () cuer = 1077 (b) suor = 0.5. (¢) opov = 2.0.

magnetic energy. Thus energy can be transferred
in both directions.

Some of the curves in Figs. 4(b) and (¢) exhibit
multiple peaks and valleys, the effect being par-
ticularly pronounced for op,r = 2 and B% = 16.
TFor that case, Fig. 4(c) indicates that the energy
transfer can be in one direction at a given wave
number and in the opposite direction at a slightly
different wave number. A similar curve was ob-
tained for omer = 0.5 and B%¥ = 16, but the curve
in that case was predominantly positive, rather than
negative. Because of the interaction of Faqs. (37)
to (39), some of the curves in Iligs. 1 and 3 also
have a wavy appearance. In all cases the number
of peaks increases as B* increases. In the curve
in Iig. 1(b) for ouer = 0.5 and B% = 128, there are
actually a large number of very small peaks, but
they are too small to show up in the plot. The
quantity B¥ is proportional to (¢ — to)}, so that as

7x10°2

time increases, for a fixed B, the number of peaks
in the spectrum curves will increase.

A necessary condition for the development of
multiple peaks seems to be that the energy in the
mechanical and magnetic modes be of the samec
order of magnitude. Thus the effect does not occur
for ouew = 1077, or for other values of ouw when B%
is small, inasmuch as the energy in the magnetic
mode is much less than that in the mechanical mode
for those cases. The second term in Eq. (38) is
proportional to the difference between the mechanical
and magnetic encrgy at a particular value of x.
It scems reasonable that the waviness observed in
the spectra should develop when the two quantities
are of the same order of magnitude.

Comparison of Figs. 1(a) and 3(a) indicates that
negligible cnergy is contained in the magnetic mode
for ouor = 1077, This occurs in spite of the fact
that the interchange terms for ouw = 107 and for
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FI1c. 4. Dimensionless interchange term for transfer of energy between mechanical and magnetic modes. (a) ouer = 1077,
(b) opor = 0.5. (¢) guov = 2.0.
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0.5 are of the same order of magnitude [see Figs.
4(a) and (b)]. Comparison of the interchange term
and electrical dissipation terms in Eq. (39) shows
that they are very nearly equal. Thus, for ouw=1077,
nearly all the energy that is transferred out of the
mechanical mode is dissipated immediately by elec-
trical resistance. The energy dissipated by electrical
resistance 1s of the same order of magnitude as that
dissipated by viscous action for all three values of
ouev, as can be seen by comparison of Figs. 1 and 3
and the dissipation terms in Eqgs. (37) and (39).

wodioa ~F 3ot
ratciy ui

The the dissipation term for magnetic
energy to that for mechanical energy (integrated
over all directions) is the same as the ratio of an
ordinate on Fig. 3 to a corresponding ordinate on

Fig. 1 divided by ougv.

Partition of Turbulent Energy Between Velocity
and Magnetic Fields

A point of considerable physical interest is the
partition of turbulent energy between the mechanical
and magnetic modes. Figure 5 shows b,b,/ (mopu,u;)
and bj/uepu’ plotted against B%. For the two higher
values of oue, the curves approach one for large
values of time or of B;. On the other hand, for
our = 1077, the ratios are essentially O for values
of B% up to 130 X 10°. For the higher values of
ouov, appreciable turbulent energy remains in the
fluid when equipartition of energy is approached,
but for our = 1077 the turbulent energy is damped
out by the mean magnetic field without approaching
equipartition (see Figs. 2 and 5). The small amount
of fluctuating magnetic energy in this case can be
thought of as due to the fact that the mean mag-
netic lines of force arc not pulled about by the
velocity field except for fluids of very high con-
ductivity (high ouev).

The tendency of the emergy to approach equi-

b 5 /(ko p TTH)
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~== 55 /{mp uf)
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Fia. 5. Ratio of turbulent energy in magnetic mode to that
in mechanical mode.

ROBERT G.

DEISSLER

partition can be explained with the aid of Eqgs. (37)
to (39). The second term in Eq. (38) will produce
a positive contribution to the change in the transfer
term when the mechanical energy is greater than the
magnetic energy and vice versa. Reference to Egs.
(37) and (39) then shows that its effect will be to
produce equality of energy in the mechanical and
magnetic modes. For ouer = 2, the ratio of magnetic
to mechanical energy becomes greater than 1 before
leveling off at unity. This evidently can occur be-
cause the dissipation rate for mechanical energy is
greater than that for magnetic energy in that case.

It might be emphasized that the present results
concerning the equipartition of energy are for a
weak turbulence in which triple correlations are
negligible. However, regardless of the effect which
triple correlations may have on the partition of
energy, the terms in Kqgs. (37) to (39) which tend
to produce equipartition will still be present if a
mean magnetic field is imposed. In connection with
the triple correlations, it is of interest that they will
not arise because of the interaction of the magnetic
and velocity fields if those correlations are initially
absent. For if we construct three point equations
for the triple correlations from Egs. (14) and (15)
by multiplying them through by velocity or mag-
netic field fluctuations at two other points, we find,
for instance, that dum; w,’ /0t = 0 if the triple and
quadruple correlations are initially zero. (Note that
terms such as du,u,/dx, are zero for homogeneous
turbulence.) This is in contrast to the case of the
double correlations u,b}. Those correlations can arise
even though initially zero, so long as wau) is not
initially zero [Eq. (20)].

It has been suggested that cosmic rays are caused
by the acceleration of charged particles by wander-
ing (or turbulent) magnetic fields in interstellar
space.'’ Inasmuch as ouew is probably greater than
one for this case, Fig. 5 indicates that the required
turbulent magnetic field should exist if a turbulent
velocity field and a mean magnetic field are present.
Inasmuch as ou,r is probably greater than one in
interstellar space, the energy in the turbulent mag-
netic field should be at least as great as that in the
veloeity field.

Partition of Turbulent Energy Between
Directional Components

Another point of interest is the partition of the
mechanical and magnetic energy between the di-
rectional components. Values of «2/(3u;u;) and of

1t F. Fermi, Phys. Rev. 75, 1169 (1949).
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F1c. 6. Ratio of component of turbulent mechanical energy
in direction of mean magnetic field to average directional
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b2/(3b;b,) are plotted against B% in Figs. 6 and 7.
A value of one on the ordinates of these curves
indicates that the three directional components of
the mechanical and the magnetic energy are equal,
inasmuch as . = u and b° = b2 from symmetry
considerations. The curves indicate considerable in-
terchange between the directional components. This
may be somewhat surprising in view of the fact that
the pressure force terms, which are usually asso-
ciated with the transfer between directional com-
ponents, are absent in the present case. The inter-
change might be attributed to a difference in the
decay rates and in the transfer between the mag-
netic and mechanical modes for the three directional
components.

For large values of B% the curves for ouey = 0.5
and 2 approach one. Those for lower values of ouov
tend to approach 1.5 and then, except for oper = 107
and 1077 decrease toward one. Equal energy can
evidently occur in the three directional components
because each of Eqs. (37) to (39) is identical for the
three components. Thus, if the effects of initial
conditions as given by Eq. (44) are negligible for
large values of B¥ the three components of the me-
chanical and the magnetic energy could be equal,
as shown in Figs. 6 and 7.
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F1c. 7. Ratio of component of turbulent magnetic energy
in direction of mean magnetic field to average directional
component.

CONCLUSIONS

Turbulent energy is transferred between the me-
chanical and magnetic modes by an interchange
term in the spectral and correlation equations, this
term being proportional to the mean magnetic field.
A term in the equation of change for the interchange
term is proportional to the difference between the
mechanical and magnetic energy and causes energy
to be transferred in such a direction that it tends to
produce equipartition of energy between the me-
chanical and magnetic modes. Multiple peaks can
develop in the spectrum curves when the energy in
the mechanical and magnetic modes is of the same
order of magnitude. When the kinematic viscosity
is much less than the electrical resistivity (or mag-
netic diffusivity) as for liquid metals, most of the
energy transferred out of the mechanical mode is
dissipated immediately by electrical resistance. Thus
very little energy resides in the magnetic mode, and
the interchange term, in this case, is ineffective in
producing equipartition of energy. Except for very
low ratios of kinematic viscosity to electrical re-
sistivity, the turbulent energy in the velocity and
magnetic fields tends to be equally divided between
the directional components for large values of time
or of mean magnetic field.
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